
РАССЕЯННОЕ УГЛЕРОДИСТОЕ ВЕЩЕСТВО В ЗОЛОТОРУДНОМ МЕСТОРОЖДЕНИИ ДЕГДЕКАН

Романова А.С., Будяк А.Е. (Институт Геохимии им. А.П.Виноградова, г. Иркутск)

В пределах Яно-Калымского металлогенического пояса известны ряд крупных месторождений золота приуроченных к участкам развития черносланцевых формаций, относящихся к позднепермским осадкам палеобассейна. Среди них такие известные месторождения как Наталкинское и Дегдекан, а так же ряд более мелких по запасам их сателлитов.

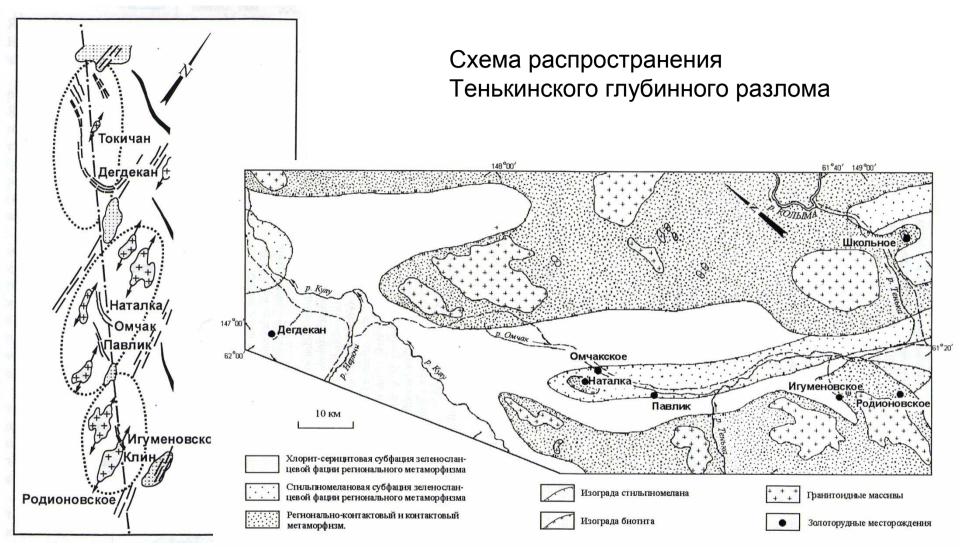
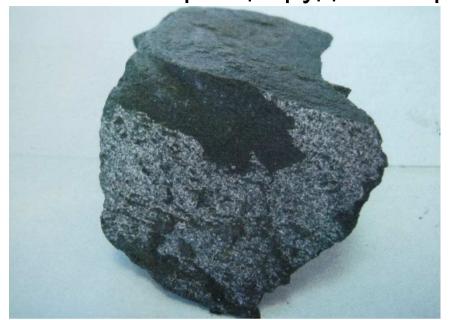



Рис. Схема распространения фаций прогрессивного метаморфизма (составлена на основе карты М. Л. Гельмана, М. П. Крутоус, А. У. Филиппова и О. Г. Эпштейна, 1976 г.) [Ворошин и др., 2000б]

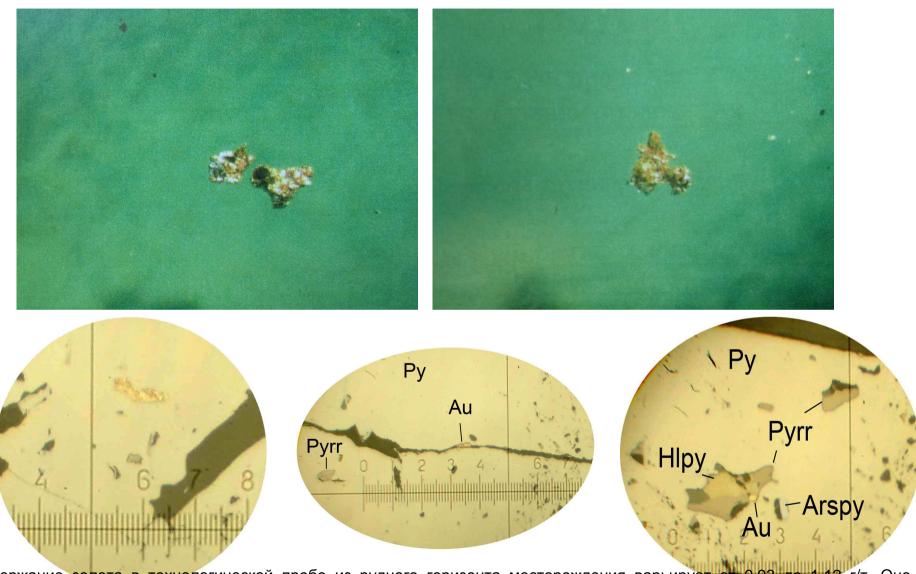
Важно отметить пространственную локализацию круга золоторудных объектов приуроченных к черносланцевым толщам, таких как Родионовское, Игуменовское, Павлик, Омчак, Наталка, Дегдекан, Токичан и др., глубинному тенькинскому разлому.

Наши исследования рассеянного углеродистого вещества (РУВ) углеродистых сланцев проводилось на технологической пробе месторождения Дегдекан (ИрГИрМет). Непосредственно изучаемое месторождение локализовано в пермских черносланцевых толщах Аян-Юряхского антиклинория Верхояно-Чукотской складчатой области.

Образцы руд месторождения Дегдекан

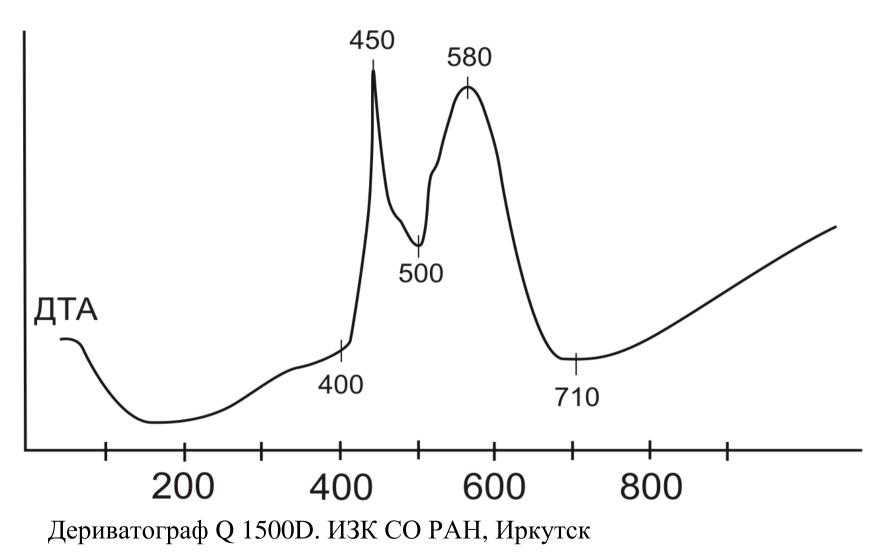
Технологическая проба, исслед<mark>уемая в данной работе, характеризует первичные р</mark>уды, представленные в основном углистыми сланцами с преобладанием в составе прожилков карбонатов, кварца, с массовой долей сульфидов не более 3%. Текстура – прожилковая и прожилково-вкрапленная.

Результаты спектрального анализа пробы

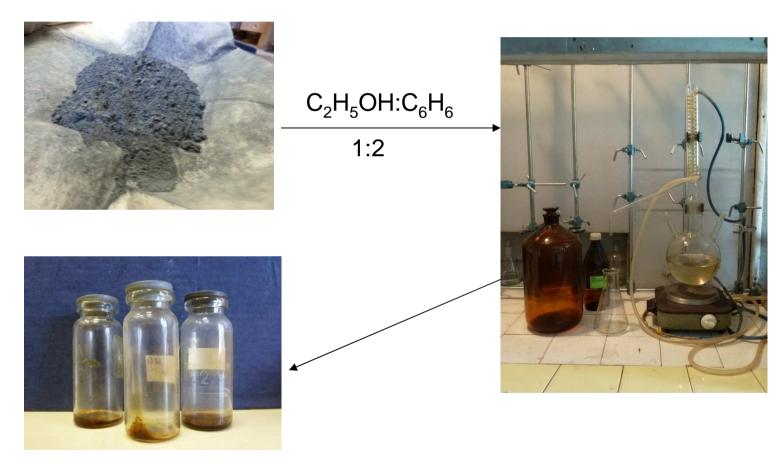

Элемент	Массовая доля, %	Элемент	Массовая доля, %
Ni	0.008	Sc	0.0005
Co	0.002	Be	0.0003
V	0.008	В	0.03
Cr	0.015	Ga	0.003
Pb	0.003	La	0.003
Cu	0.006	Y	0.004
Zn	0.02	Yb	0.0004
W	0.001	P	0.05
Mo	0.0003	Ba	0.03
Zr	0.015	Sr	0.04
As	0.15	Li	0.006
Sn	0.0008	Ge	0.0001

Химический состав проб (силикатный анализ)

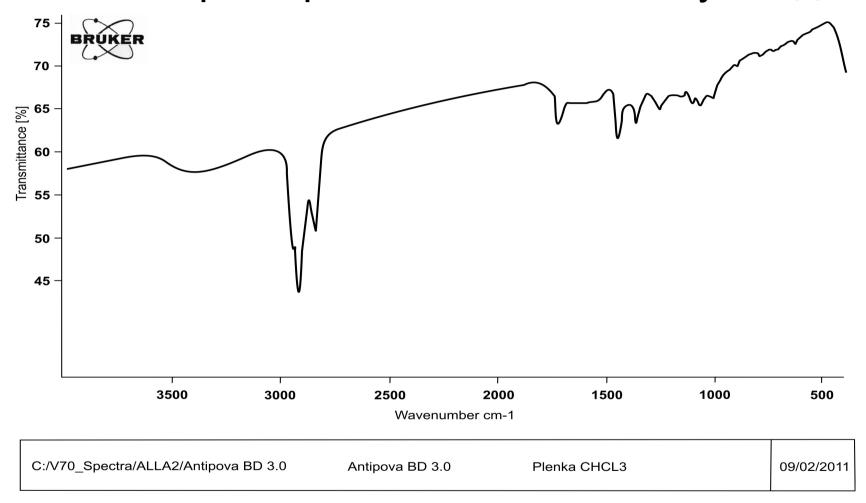
Компоненты	SiO ₂	Al ₂ O ₃	TiO ₂	MnO	CaO	K ₂ O	P_2O_5	Fe _{общ}	S _{общ}
Массовая доля, %	67,6	19,1	0,76	0,07	1,30	3,30	0,19	4,12	1,48


Химический состав пород изучали с применением оптического спектрального, количественного рентгенофлюоресцентного и фазового атомно-абсорбционного методов анализа. Содержание драгоценных металлов определяли пробирным анализом исходной пробы, а также по балансу технологических опытов.

Золото месторождения Дегдекан

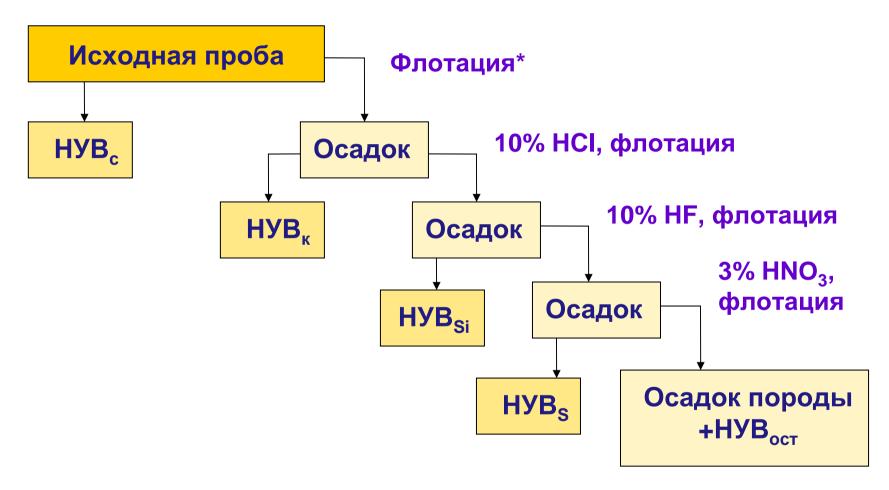

Содержание золота в технологической пробе из рудного горизонта месторождения варьирует от 0,93 до 1,12 г/т. Оно находится преимущественно в самородном виде и ассоциировано с кварцем и сульфидами. Золото, в основном, мелкое и тонкое, его доля составляет 82,3 % от общей массы золотин. Размер частиц изменяется от 3мкм до 25мкм. Форма частиц разнообразная, но преобладают частицы неправильных очертаний.

Дериватограмма углистой пробы.


На первом этапе было определено валовое содержание углерода, которое составляет 1,8–2,5%. Углерод присутствует в карбонатной (0,67%) и органической (1,82%) форме. На кривой дифференциально-термического анализа для углистой пробы (ИЗК СО РАН, Иркутск) зафиксировано два максимума экзотермической реакции, соответствующие 450°С и 580°С, что указывает на неоднородность углеродистого вещества и вероятность различного его генезиса. Изотопный состав углерода (δ13С) углеродистого вещества (ЦНИГРИ, Москва) составляет в среднем –21,5%, что подтверждает его биогенное происхождение

Метод извлечения растворимого углеродистого вещества

Следующим этапом исследования было извлечение растворимого углеродистого вещества (битумоид). Извлечение битумоида из исследованной пробы осуществлялось холодной экстракцией. Один килограмм пробы, измельченной до 0,25 мм, помещается в емкость из темного стекла для исключения процесса окисления растворителя и экстракта под воздействием солнечного света заливается шестью литрами смесью спирт-бензол (1:2). Экстракция проводится в течение 10 дней при механическом перемешивании с периодической сменой растворителя. Далее битумоид отделялся от растворителей и высушивался до постоянного веса, выход его составил 0,0004%.


ИК-спектр спиртобензольного битумоида.

прибор UR-1, ИХ СО РАН, Иркутск

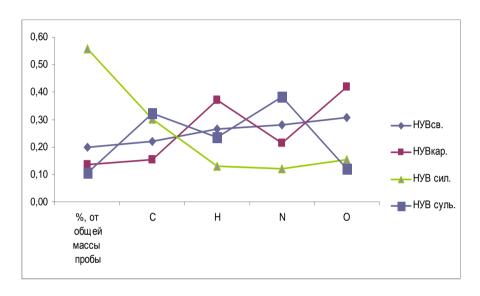
По данным ИК-спектроскопии (прибор UR-1, ИХ СО РАН, Иркутск) спиртобензольный битумоид исследуемой пробы характеризуется полосами поглощения метильных и метиленовых структур углеводородов (1390, 1460 см-1), парафиновых цепей (2920, 2950-2970 см-1), полос поглощения ароматических структур, кислородных функциональных групп карбонатных кислот, альдегидов, ароматических сложных эфиров нет. Элементный анализ показал, что спиртобензольный битумоид состоит только из углерода 88,34% и водорода 11,86%, то есть представленными углеродистыми фракциями (нормальные алканы и нафтеновые углеводороды). Геополимеры (смолы, асфальтеновая фракция) не зафиксированы, так как не обнаружены соединения с гетероэлементами (азот, кислород, сера).

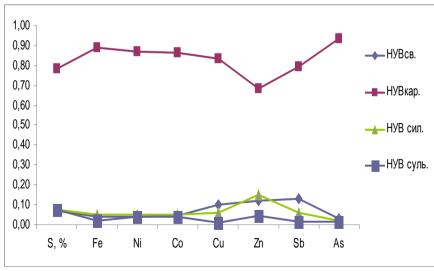
Схема анализа

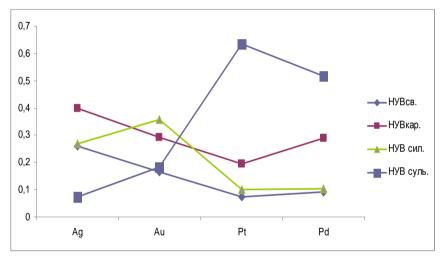
Примечание: НУВ $_{c}$ - свободное; НУВ $_{k}$ - карбонатное; НУВ $_{Si}$ - силикатное; НУВ $_{Si}$ - сульфидное; НУВ $_{oct}$ - остаточное.

^{* -} проба $+H_2O+$ петролейный эфир.

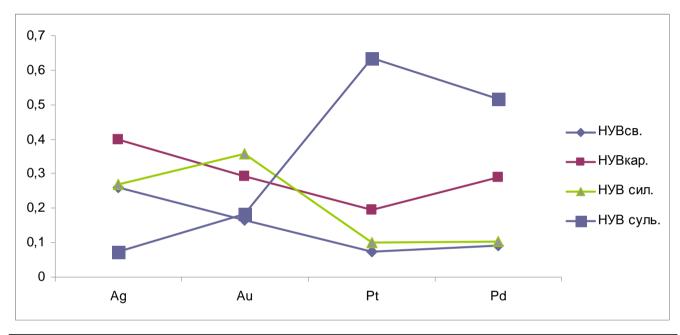
Распределение основных элементов в нерастворимом углеродистом веществе (НУВ), месторождение Дегдекан

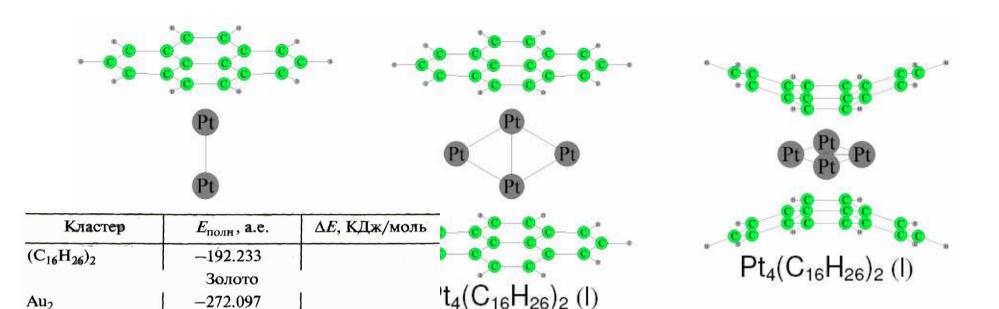

название	ا ہے			%					
пробы	пробы выделенного в-ва, г	от общей - массы пробы	С	Н	O	N	S	Fe	
НУВсв	0.280	0.019	60.1	0.61	22.2	0.42	0.21	0.41	
НУВ	0.125	0.013	41.9	0.86	30.4	0.32	2.35	9.10	
НУВ _{Si}	0.315	0.053	82.3	0.30	11.2	0.18	0.22	0.52	
НУВ _S	0.059	0.010	87.5	0.54	8.7	0.57	0.22	0.23	
сумма	0.779	0.095	271.8	2.31	72.5	1.49	3	10.26	


Примечание: НУВс- свободное; НУВ $_{\rm K}$ - карбонатное; НУВ $_{\rm Si}$ - силикатное;


 ${\rm HYB}_{\rm S}$ - сульфидное; ${\rm HYB}_{\rm oct}$ - остаточное.

С, H, O, N, S – элементный анализ, Иркутский Институт Химии им. А.Е. Фаворского Fe – атомно-эмиссионный анализ, Институт геохимии им. А.П. Виноградова, Иркутск


Распределение основных элементов в нерастворимом углеродистом веществе (НУВ), месторождение Дегдекан



Распределение Ag, Au, Pt, Pd в нерастворимом углеродистом веществе (НУВ), месторождение Дегдекан

название пробы	Ад, г/т	Аи, г/т	Pt, г/т	Рd, г/т
НУВ _{св}	9,3	6,8	0,3	0,09
$\mathbf{H}\mathbf{y}\mathbf{B}_{_{\mathbf{K}}}$	14	12	0,9	0,27
НУВ _{Si}	9,6	15	0,5	0,09
НУВ _S	2,6	7,5	2,8	0,48

Примечание: атомно-абсорбционный анализ, Институт геохимии им. А.П. Виноградова, Иркутск

Аu₂(C₁₆H₂₆)₂ (-) —464.342 —30

Анди (Был Невы компень) квантовохимические расчеты 109

взаимодействия графенов (С16Н26) моделирующих структуру графита с кластерами золота, серебра и платины.

На рисунке приведены рассчитатиче конфигурации графенового фрагмента и компереход в платины.

-544.233

-464.370

-105

Au₄

 $Au_2(C_{16}H_{26})_2(|)$

	l'	3					
Pt ₄	-478.817						
$Pt_2(C_{16}H_{26})_2()$	-431.630	-261					
$Pt_4(C_{16}H_{26})_2()$	-671.119	-179					
$Pt_4(C_{16}H_{26})_2(-)$	-671.157	-278					
Серебро							
Ag_2	-292.4796						
Ag ₄	-584.9893						
$Ag_2(C_{16}H_{26})_2()$	-484.7396	-70					
$Ag_4(C_{16}H_{26})_2()$	-777.2535	-83					
$Ag_4(C_{16}H_{26})_2(-)$	-777.2327	-29					

в таблице показаны полные энергии рассчитанных кластеров (Еполн) и энергии взаимодействия металлических частиц с фрагментами графенов (Δ E). Как видно из таблицы именно комплекс с 4 атомами Pt с горизонтальным расположением металлического кластера оказался наиболее выгодным. Данные результаты позволяют сделать вывод о том, что при метаморфических преобразованиях, в межплоскостном пространстве графита частицы золота и серебра в нулевой степени окисленности вряд ли могут взаимодействовать с углеродом по механизму хемосорбции. При этом энергия взаимодействия кластера Pt особенно в ее горизонтальном расположении значительно выше. Из этого следует, что нанокластеры платины в графите способны создавать прочные химические связи. В следствии этого при кислотном выщелачивании платины, мы имеем ее значительные потери, что вероятно и мешает ее обнаружению на месторождении связанных с черносланцевыми формациями

Выводы:

Золото находится преимущественно в самородном виде и ассоциировано с кварцем и сульфидами.

Как известно концентраторами золота в битумоидах золоторудных месторождений, локализованных в черносланцевых толщах, являются в основном асфальтеновые фракции [Развозжаева и др., 2010]. Растворимая компонента (битумоид) месторождения Дегдекан имеет углеводородный состав и не содержит асфальтенов. В связи, с чем обнаружение золота в битумоидах, на наш взгляд является маловероятным.

Тем не менее, нерастворимый углерод (кероген), представляющий одну из минеральных фаз углистых сланцев месторождения Дегдекан, мог служить средой для концентрирования металла в процессе рудогенеза.

Рt находится в сульфидной фракции нерастворимого углеродистого вещества. По нашему мнению Рt на месторождении имеет исключительно научный, а не экономический интерес.

