

Новосибирский национальный исследовательский государственный университет (НГУ) Геолого-геофизический факультет Институт геологии и минералогии им. В.С. Соболева СО РАН Лаборатория минералов высоких давлений и алмазных месторождений

Геохимия, Rb-Sr и Sm-Nd системы деформированных перидотитов из кимберлитовой трубки Удачная-Восточная

Выполнила: Е.А. Сургутанова Научный руководитель: к. г.-м. н. А.М. Агашев

Новосибирск, 2013

ГЕОЛОГИЧЕСКАЯ ПОЗИЦИЯ

1- границы Сибирской платформы, 2 - Анабарский щит, 3 – мезозойские алмазоносные поля, 4 – палеозойские поля алмазоносности, 5 – трубка Удачная. Разрез кимберлитовой трубки Удачная (по В.В. Готовцеву).

КОЛЛЕКЦИЯ ОБРАЗЦОВ

По рассчитанному модальному минеральному составу изучаемые образцы относятся к гранатовым лерцолитам и гранатовым гарцбургитам (оливин 50-75 мас. %, клинопироксен 3-15 мас. %, ортопироксен 10-20 мас. %)

Р-Т УСЛОВИЯ

Температуры и давления равновесия ксенолитов деформированных перидотитов трубки Удачная; область РТ зернистых перидотитов (Boyd, 1986)

- деформированные перидотиты;
Утолщенная линия – переход графит/алмаз.

Температура равновесия ксенолитов оценена, как 1260-1400⁰С, давление - 56-70 кбар.

Диапазон глубин ≥170-220 км. По геофизическим данным эта глубина маркирует переход континентальная литосфераастеносфера (Boyd, 1986)

P-T условия равновесия ДЛЯ деформированных перидотитов были рассчитаны помощью С двупироксен-гранатового геотермобарометра (Brey and Kohler Точки вблизи 1990). легли 40 континентальной геотермы MBT/M^2 (Pollack and Chapman, 1977).

ХИМИЧЕСКИЙ СОСТАВ МИНЕРАЛОВ

Гранаты и пироксены были исследованы на содержания редкоземельных и рассеянных элементов с помощью метода LA ICP-MS

Все клинопироксены по форме REE-спектра соответсвуют лерцолитам

Спектры РЗЭ, нормированных на состав хондрита (McDonough, 1995), для клинопироксенов из деформированных перидотитов трубки Удачная Восточная. Наклонная форма спектров, соответствует деформированным лерцолитам (Pearson et al., 2003)

лими ческий состар МИНЕРАЛОВ

Спектры РЗЭ, нормированных на состав хондрита, для гранатов – включений в алмазах лерцолитового и гарцбургитового парагенезисов, и для гранатов нормального лерцолитового состава (N Lherzolitic) Stachel, 2008.

Спектры РЗЭ, нормированных на состав хондрита (McDonough, 1995), для центральных и краевых частей граната и келифита в образце Uv 27/01.

ЗОНАЛЬНОСТЬ ГРАНАТОВ

Распределение элементов в рамках каждого зерна показывает зональность граната по Ti, Ca, и Cr.

Этой зональностью сопровождается переход от гарцбургитового парагенезиса к лерцолитовому (увеличение к краям содержания Ті в гранате, Са и Сг уходят в Срх).

АНАЛИЗ СОСТАВОВ ПОРОД В ЦЕЛОМ

Далее, измеренные редкоэлементные составы деформированных перидотитов сравнили с рассчитанными.

АНАЛИЗ СОСТАВОВ ПОРОД В ЦЕЛОМ

Спектры РЗЭ, нормированных на состав хондрита (McDonough, 1995) для каждого образца. Красная линия – результат измеренных данных из порошка породы. Синяя – результат рассчитанных данных, согласно модальному минеральному составу породы и редкоэлементному cocmaey Gar u Cpx

GdTh Dy Ho Er Tm Yh L

Uv38/02

Uv18/04

Повышенное содержание LREE и HREE, а также Rb, Ba, Th, U, Nb, Та, Zr в породе не соответствует рассчитанным содержаниям из состава граната и клинопироксена.

РАСТВОРЕНИЕ ОБРАЗЦОВ

	Bec	Mg	Si	AI P	K	Ca	Fe	
холостой		0.60	2.9 1	.41 0.9	0.30) 1.17	0.4	8
UV 33/04	0.4448	6388.4 3	215.0 13	4.2 7.	2 431.6	5 193 .9	2219	.9
UV 18/04	0.6374	5637.1 2	695.9 9	2.7 4.	4 235.7	7 155.2	1375	.0
UV 285/02	0.5865	4258.7 2	335.0 5	5.8 19	.5 148.8	3 108.9	1141	.3
UV 30/04	0.5753 1	5617.2 6	920.4 18	8.6 11	.9 323.9	512.9	3631	.4
	Rb	Ba	Th	U	K	Nb	La	Ce
UV 33/04	2.258318	6.698516	0.015737	0.004496	431.567	0.116007	0.101169	0.162995
UV 18/04	1.805773	11.3912	0.010982	0.002353	235.6972	0.082837	0.041575	0.068246
UV 285/02	0.895141	13.72677	0.009378	0.001705	148.7872	0.095141	0.044331	0.058824
UV 30/04	1.832957	5.01999	0.014775	0.004346	323.8785	0.096993	0.149487	0.239006
	Sr	Nd	Zr	Sm	Eu	Y	Yb	Lu
UV 33/04	1.710881	0.051709	0.28125	0.008993	0.00281	0.029227	0.002248	
UV 18/04	1.994823	0.024318	0.16026	0.003922	0.001961	0.014904	0.001569	
UV 285/02	1.800512	0.02046	0.10665	0.00341	0.002131	0.016198	0.001705	
UV 30/04	2.642969	0.095602	3.640362	0.013037	0.007387	0.052147	0.005215	0.000869

Количество растворимой фазы – 2,2-2,4 вес.% от общей массы образца. Наибольшее количество вещества в растворимой фазе наблюдается для:

Sr (11-22%)Rb(23-40%)La (8-27%)Ta (8-28%)Ce (5-19 %)U (7-24%)Th (15-25.5%)Ba (47-100%)

АНАЛИЗ РАСТВОРОВ

Осуществлен пересчет главных элементов раствора на минералы. Получившиеся минералы исследуемых интерстиционных фаз перидотитов: Cat, Ap, Phlog, T-Phlog, а также имеет место растворение силиката (Mg+Fe+Si).

Cat	 Sr, Ce, La, Ba
Ар	Sr, Th, U
Phlog	Rb, Ba, Ta-Nb

ПРИРОДА МЕТАСОМАТИЧЕСКОГО АГЕНТА

Мультиэлементные спектры растворимых в HCI элементов деформированных перидотитов в сравнении с мультиэлементным спектром содержания элементов кимберлита трубки Удачная (Агашев, 2003).

Спектр растворимой фазы перидотитов по форме похож на кимберлитовый. Максимум по К свидетельствует об избирательной экстракции из расплава К, Rb, Ba и, возможно Sr, перидотитом посредством образования келифитовых кайм.

ИЗОТОПНАЯ Rb-Sr и Sm-Nd ХАРАКТЕРИСТИКА

Изотопная характеристика Sr показывает, что измеренное отношение ⁸⁷Sr/⁸⁶Sr в образце имеет радиогенный состав изотопов Sr, а начальное ⁸⁷Sr/⁸⁶Sr^t (t=370 млн.лет) отношение показывает значения астеносферной мантии.

	Rb	Sr	⁸⁷ Rb/ ⁸⁶ Sr	⁸⁷ Sr / ⁸⁶ Sr		⁸⁷ <u>Sr</u> / ⁸⁶ <u>Sr i</u>
образцы	ppm	ppm		измереное	2σ	инициальное
Uv-268/02	6.79	29.62	0.639742	0.707660	0.000013	0.704290
Uv-97/02	3.66	23.06	0.442569	0.707835	0.000012	0.705504
Uv-208/02	3.56	8.47	1.174470	0.711545	0.000013	0.705358
Uv-1/04	6.39	25.93	0.687225	0.708638	0.000013	0.705018
Uv-252/02	5.70	16.46	0.966548	0.709721	0.000014	0.704629
<u>Uv</u> 03/02	4.18	19.08	0.610758	0.707571	0.000012	0.704354
Uv-33/04	5. 64	11.43	1.378170	0.710703	0.000011	0.703443
Uv-257/02	4.79	48.18	0.277703	0.710760	0.000011	0.709297
Uv-30/04	5.31	12.54	1.182545	0.709959	0.000012	0.703730
Uv-27/01	9.52	22.78	1.165518	0.710574	0.000012	0.704434
Uv-3/05	7.35	28.20	0.727617	0.708166	0.000012	0.704333
Uv-153/02	3.83	21.21	0.503616	0.708023	0.000011	0.705370
Uv-24/05	12.15	28.48	1.190323	0.709891	0.000008	0.703621
Uv-18/04	4.95	9.27	1.489889	0.711861	0.000011	0.704013
Uv-285/02	3.82	15.08	0.706790	0.708344	0.000009	0.704621
КИМБЕРЛИТ	57.2	518.8	0.3188	0.705694		0,704033

Данные по изотопным отношениям для кимберлита трубки Удачная А. М. Агашева (Агашев, 2003)

ИЗОТОПНАЯ Rb-Sr и Sm-Nd ХАРАКТЕРИСТИКА

Изотопная характеристика Nd показывает, что современные и начальные ¹⁴³Nd /¹⁴⁴Nd отношения не имеют значимых различий между образцами, схожи с вмещающими их кимберлитами и немного выше современных значениий PM = 0,51264 (Фор, 1989). По величине εNd(t) образцы отличаются от кимберлитов на 0,07-1,52 единиц.

	Sm	Nd	¹⁴⁷ Sm/ ¹⁴⁴ Nd	¹⁴³ Nd / ¹⁴⁴ Nd	¹⁴³ Nd / ¹⁴⁴ Nd į		
№ образца	ppm	ppm		измереное	2σ	инициальное	εNd
Uv-268/02	0.29	1.51	0.118341	0.51267	0.000015	0.512383	4.3
Uv-97/02	0.27	1.19	0.136154	0.512752	0.000015	0.512422	5.1
Uv-208/02	0.19	0.73	0.160127	0.512742	0.000017	0.512354	3.8
Uv-1/04	0.27	1.19	0.135010	0.512703	0.000016	0.512376	4.2
Uv-252/02	0.21	0.86	0.14443	0.512761	0.000017	0.512411	4.9
<u>Uv</u> 03/02	0.26	1.18	0.13376	0.512779	0.000010	0.512455	5.7
Uv-33/04	0.12	0.55	0.13423	0.512711	0.000013	0.512386	4.4
Uv-257/02	0.15	0.62					
Uv-30/04	0.17	0.72	0.14301	0.512754	0.000010	0.512408	4.8
Uv-27/01	0.35	1.48	0.14062	0.512741	0.000010	0.512400	4.7
Uv-3/05	0.38	1.86	0.12326	0.512726	0.000017	0.512427	5.2
Uv-153/02	0.26	1.10					
Uv-24/05	0.33	1.55	0.12872	0.512719	0.000016	0.512407	4.8
Uv-18/04	0.09	0.49	0.11105	0.512727	0.000010	0.512458	5.8
Uv-285/02	0.11	0.47					
КИМБЕРЛИТ	6 .57	48.33	0.081500	0.51258		0.512384	4.3
PM			0.196700	0.512638			
DM			0.213800	0.51315			

14

Данные по изотопным отношениям для РМ и DM взяты из учебника Г. Фора (Фор, 1989), для кимберлита трубки Удачная из диссертации А. М. Агашева (Агашев, 2003)

ИЗОТОПНАЯ Rb-Sr и Sm-Nd ХАРАКТЕРИСТИКА

Диаграмма значений εNd/^{87/86}Sr для деформированных перидотитов тр. Удачная в сравнении с составами перидотитов других кимберлитовых трубок из литературных данных. Выделены поля MORB, OIB и PREMA (Hofman, 1997), PM (Фор, 1989), t-время внедрения кимберлита 370 млн.лет.

Перидотиты из литературных данных показывают сильное обогащение радиогенным Sr, что свидетельствует о древнем обогащении или контаминации корового материала.

Изучаемые образцы преимущественно имеют астеносферные значения изотопов и попадают в поле PREMA (prevalent mantle, Hoffman, 1997).

Rb-Sr и Sm-Nd ХАРАКТЕРИСТИКА

Состав изотопов Nd в деформированных перидотитах не успел значительно эволюционировать, сохраняя деплетированный характер до настоящего времени, значит метасоматоз, привнесший элементы в систему, произошел незадолго до формирования кимберлитов.

Полученные данные позволяют предложить некую модель эволюции изучаемых пород:

Незадолго до формирования кимберлитов происходила значительная по масштабу переработка истощенных пород низов литосферы в процессе взаимодействия с силикатным астеносферным расплавом. Это привело к метасоматозу перидотитового субстрата (переход из гарцбургитового парагенезиса в лерцолитовый), в результате чего сформировались остаточные магмы, обогащенные несовместимыми элементами, карбонатными фазами. Результатом просачивания таких магм через твердую породную матрицу перидотита является образоание субмикронных интерстиционных минералов.

ЗАКЛЮЧЕНИЕ

В настоящем исследовании получены следующие основные результаты:

• Минералы деформированных перидотитов равновесны при более высоких Р-Т параметрах, нежели их равномернозернистые аналоги.

• Изучение химических составов граната и клинопироксена позволили доказать, что протолитом изучаемых пород были гарцбургиты.

• Различие рассчитанного и измеренного составов деформированных перидотитов доказывает присутствие субмикронных интерстиционных фаз, не обнаруживаемых в модальной минералогии образцов. Это свидетельствует о скрытом мантийном метасоматозе, привнесшем эти фазы.

• По Rb-Sr и Sm-Nd изотопным данным можно заключить, что метасоматоз произошел незадолго до формирования кимберлитов и был осуществлен расплавом астеносферного происхождения

• Анализ растворимых интерстиционных минералов позволяет определить природу метасоматического агента, как кимберлитоподобную

