Петрология и эволюция субщелочных лав вулкана Уксичан (Срединный хребет, Камчатка)

Давыдова М.Ю.

Дальневосточный геологический институт ДВО РАН

Рис. 1. Положение вулкана Уксичан на схеме вулканических поясов Камчатки.

Условные обозначения:

 палеогеновые осадочные толщи с эоценраннеолигоценовыми субвулканическими телами калиевых щелочных и субщелочных пород Западной Камчатки (абсарокиты, трахибазальты, шонкиниты, сиениты);

2 – палеоцен-среднеэоценовый вулканический пояс
Западной Камчатки (Шанцер, Федоров, 1999);
3 – миоценовые осадочные толщи со средневерхнемиоценовыми субвулканическими телами и лавами К-Na щелочных и субщелочных базальтоидов
Восточной Камчатки;

4 - олигоцен-миоценовые и плиоцен-четвертичные вулканические пояса Камчатки;

5 – вулкан Уксичан.

Схема составлена на основе Геологической карты Камчатской области М. 1:1500000 (под ред. Г.М. Власова, 1976). Сокращения на схеме: вулканические пояса Южной Камчатки (ВПЮК), Восточной Камчатки (ВПВК) и Срединного хребта (ЦКВП); ЦКД - Центральная Камчатская депрессия.

Вулкан Уксичан расположен в центральной части вулканического пояса Срединного хребта Камчатки.

История изучения

Проведенные в разное время тематические научные исследования определи вещественное многообразие вулканических образований и позволили установить этапы развития стратовулкана, щитового вулкана, кальдеры-вулкана и комплекса внутрикальдерных экструзий (Огородов и др., 1967, 1972; Скороходов, 1976, 1979; Стефанов, Широкий, 1980). На основании петрохимических, геохимических и минералогических исследований были выделены геохимических, геохимических и минералогических исследований были выделены геохимические типы пород, предпринимались попытки установить геодинамические условия их формирования (Антипин и др., 1987; Перепелов, 1989). Тремя различными методами: К-Ar, Ar-Ar, U-Pb был определен возраст постройки вулкана Уксичан -3.6 млн.л (Перепелов и др., 2006), 3.56±0.50 и 3.34±0.07 млн.л. (Bindeman et al., 2010), 3.28±0.04млн.л. (Kostitsyn et al., 2011) соответственно. Петрология молодых плейстоцен-голоценовых базальтоидов, с использованием современных методов элементного анализа (петрогенные и микроэлементы, изотопы Sr, Nd, Pb), рассмотрена в публикациях (Волынец, 2006; Волынец и др., 2005; Volynets et al., 2010).

Целью нашей работы является рассмотрение вопросов генезиса и эволюции магматических расплавов сложно построенных вулканических аппаратов центрального типа плиоценового возраста – стратовулкана, щитового вулкана, кальдера-вулкана.

Рис.2. Схема геологического строения вулкана Уксичан.

Схема приводится по работе (Перепелов, Чащин, 2006). На врезке: положение вулкана Уксичан (залитый знак ромба) и вулканических поясов на территории Камчатки. 1 – верхнеплейстоцен-голоценовые (Q3-Q4) ареальные шлаково-лавовые вулканические конусы; 2 – верхнеплейстоценовые (Q1-Q2) щитовые вулканические постройки; 3-6 – плиоценовая (N2) постройка вулкана Уксичан; 7 – внутрикальдерный экструзивный комплекс (N2-Q1); 8 - миоценплиоценовый (N1-N2) вулканогенный фундамент; 9 – участки эпитермального оруденения; 10 – кольцевые разрывные нарушения кальдеры; 11 – разрывные нарушения кальдеры, грабена долины р. Уксичан и вулканогенного фундамента (1), другие предполагаемые и дешифрованные разрывные нарушения (2); 12 – максимальные и маркирующие абсолютные высотные отметки, наименования горных сооружений и рек.

В истории развития вулканического центра Уксичан выделяются три основных этапа: 1) миоценплиоценовый, формирование вулканогенного фундамента; 2) плиоценовый, развитие вулканических аппаратов центрального типа, 3) позднеплейстоцен-голоценовый с площадными излияниями и формированием небольших щитовых вулканов и ареальных конусов.

Вулканизм второго этапа, цель данной работы, представлен: ВК-базальтами (стратовулкан), латитами (щитовой вулкан), ВК-дацитами, трахидацитами (кальдера-вулкан). В составе стратовулкана и щитового вулкана А.Б. Перепеловым выделяются высокоглизноземистые породы.

Высокоглиноземистые породы картируются в основание разреза вулканических сооружений.

Голубым фоном отмечен комплекс

пород второго этапа магматизма;

красным шрифтом – положение в

разрезах пород с высоким

глиноземом (18-20 мас %).

ЛЕ ВЫЙ БО РТ р.УКСИЧАН СЕВЕРО-ВОСТОЧНЫЙ И ВОСТОЧНЫЙ БОРТАКАЛЬДЕРЫ Внутрикальдерный экструзивный комплекс

Аналитические исследования

- описаны прозрачные шлифы (155 шт.);
- выполнен анализ валовых составов пород на содержание петрогенных элементов (274 обр.) методами «мокрая химия» и РФА;
- исследовано 64 образца на распределение микроэлементов методом ICP-MS;
- проанализирован состав породообразующих минералов в 22 аншлифах на микрозонде (JXA8100);
- изучено распределение радиогенных и стабильных изотопов (Sr, Nd, Pb, O) в 15 образцах разновозрастных лав.

Петрохимические данные

Условные обозначения:

- ★ вулканогенный фундамент
- стратовулкан Уксичан
- 🔺 щитовой вулкан Уксичан
- кальдера-вулкан Уксичан
- поздние щитовые вулканические постройки
 ареальные конуса
 - высокоглиноземистые породы стратовулкана и щитового вулкана

На диаграмме Miyashiro рассматриваемые вулканиты, включая глиноземистые породы, локализованы преимущественно в толеитовом поле.

Условные обозначения:

вулканогенный фундамент

стратовулкан Уксичан щитовой вулкан Уксичан кальдера-вулкан Уксичан поздние щитовые вулканические постройки ариальные конуса высокоглиноземистые породы стратовулкана и щитового вулкана По соотношению SiO2-Na2O+K2O изученные породы относятся к умереннощелочному ряду. За исключением наиболее основных и наиболее кислых разностей. Первые располагаются на границе нормальной и умереннощелочной серии, вторые - в щелочной области.

С ростом содержания кремнезема закономерно возрастает содержание щелочей.

Петрография и минералогия

Ассоциации породообразующих минералов-вкрапленников

Стратовулкан							
ВК-базальт	Ol+Cpx±Pl±Opx±Mt						
ВК-андезибазальт	Pl+Cpx +Ol ±Mt						
Al-BК-андезибазальты	Pl+Cpx +Ol ±Mt						
ВК-андезит	Pl+ Opx +Cpx ±Mt ±Ol						
Щитовой вулкан							
ВК-базальт	Pl+Cpx+Opx+Ol+Mt						
ВК-андезибазальт	Ol+Pl+Cpx+Mt						
Латит	Pl+Cpx+Mt±Ol±Opx±Amp						
Кварцевый латит	Pl+Mt+Cpx+Opx						
Трахидацит	Pl+Mt+Cpx+Opx						
Кал	ьдера вулкан						
ВК-андезибазальт	Pl+Cpx+руд.м.+Opx						
Латит	Pl+Cpx+руд.м.+Opx±Bi						
ВК-дацит	Bi+Amp+Pl+Mt+Cpx						
Трахидацит	1)Pl+Cpx+Opx+Mt 2) Bi+Pl+Mt						
Трахириодацит	Bi+Amp+Pl±Mt±Cpx±Opx						

PI+Cpx+Mt наблюдаются во всех типах пород, включая наиболее кислые.

PI – доминирующий минерал вкрапленник.

Химический состав проанализированного минерала

Точка	SiO ₂	TiO ₂	Al ₂ O ₃	FeO*	MnO	MgO	CaO	Na ₂ O	K ₂ O	Cr ₂ O ₃	Сумма	mg#	Wo	En	Fs
Орх 1, центр	49.58	0.32	2.03	28.75	1.25	17.1	0.55				99.58	51	1	50	49
Орх 2, край	50.13	0.24	1.35	28.07	1.06	17.36	0.63				98.84	52	1	51	48
Орх 3, край	53.33		2.83	13.3	0.43	27.74	2.01				99.64	79	4	75	21
Срх 4, кайма	50.02	0.74	3.84	9.22		16.35	18.8				98.91	76	39	47	15
Орх 7, центр	52.84	0.32	1.49	16.5	0.74	26.45	1.36				99.71	74	3	71	26
Орх 8, край	53.32		2.65	12.72	0.32	28.08	2.07				99.15	80	4	76	20
Орх 9, край	53.05	0.36	2.62	13.85	0.36	27.34	1.92				99.49	78	4	75	22
													An	Ab	0
РІ 13, центр	56.98		25.76	0.39			8.35	6.54	0.77		98.78		40	56	4
PI 14, край	50.18		29.96	0.73			13.9	3.75	0.28		98.77		66	32	2
PI 15, край	55.03		27.45	1.18			10.3	5.43	0.62		100.05		49	47	4
GI 5	66.79		16.9	1.52			3.79	4.15	2.5		95.65				
TiMt 6	7.61	13.04	3.11	69.68	0.84	1.91					96.2				

Важной, не отмечаемой ранее, минералогической особенностью некоторых образцов ВК-базальтов, ВКандезибазальтов и ВКандезибазальтов и ВКандезибазальтов и ВК-андезибазальтов и латитов щитового вулкана являются гибридные парагененезисы фенокристов, с прямой, обратной и ритмичной зональностями темноцветных и лейкократовых минералов.

Примечание. Номера в таблице соответствуют точкам анализа, изображенным на фотографии.

Обратно зональные вкрапленники ортопироксена и плагиоклаза. JXA-8100. ВК-андезит (обр. ES-777), лавы стратовулкана.

Диаграммы An-Or

Порода	CB	ЩВ	KB
ВК-базальт	4	1	1
прям	3	1	1
обр	2		
ритм	1		
ВК-андезибазальт	2	4	
прям	2	4	
обр		1	
Высокоглиноземистые	5		
прям	5		
обр	4		
ритм	1		
ВК-андезит	1		
прям	1		
ВК-андезит экструзия	2		
прям	2		
обр	2		
ритм	1		
Латит		6	
прям		2	
обр		1	
Латит экструз		2	
прям		1	
Q-латит		1	
прям		1	
ВК-дацит			1
прям			1
Трахидацит		3	1
прям		1	
ритм			1
Трахириодацит			4
прям			2

ВК-базальт, ВК-андезибазальт

• ВК-андезит

🛦 Латит

🛆 Q-латит

 \mathbf{V}

Трахидацит

Трахириодацит

Высокоглиноземистые

Экструзии

Вкрапленники с обратной зональностью

На врезках поля составов Pl:

- область составов санидинов,

2 - Na-санидинов, 3 - анортоклазов,

4 - альбитов, 5 - олигоклазаов,

6 - андезинов, 7 - лабрадоров,

8 - битовнитов, 9 - анортитов.

Фенокристы с обратной и ритмичной зональностями широко распространены (~50%)

- ВК-базальт, ВК-андезибазальт
- ВК-андезит
- 🛦 Латит
- ▲ Q-латит
- ▼ Трахидацит

- 🔻 Трахириодацит
- И Высокоглиноземистые
 - Экструзии
- Вкрапленники с обратной зональностью

	Стратову	лкан	Щитовой	вулкан
Порода	Срх	Орх	Срх	Орх
ВК-базальт	5	1	1	1
прям	4	1	1	1
обр	3		1	
ритм	1			
незон	2			
ВК-андезибазальт	1		3	
прям	1		3	
обр			1	
Высокоглиноземистые	3	2		
прям	3	1		
обр	1	1		
незон	3			
ВК-андезит		1		
ВК-андезит экструзия	2	2		
прям	1	1		
обр	1	2		
незон	2	1		
Латит			5	3
прям			2	
обр			1	
ритм			1	
Латит экструз				1
Q-латит			1	1
обр			1	
ВК-дацит				
Трахидацит			2	2
обр			1	1
незон			1	

Петрохимические тренды

10

10

10

10

Лавы стратовулкана, щитового вулкана и кальдеры-вулкана характеризуются близкими трендами эволюции на диаграммах MgO-петрогенный элемент.

Исключение составляют высокоглиноземистые породы, имеющие повышенное содержания кальция и глинозема.

Многокомпонентная

Микроэлементный состав

Легкие лантаноиды преобладают над тяжелыми. На многокомпонентной диаграмме во всех типах пород хорошо выражена отрицательная Nb-Ta и положительная Ba-Sr-Th, что в целом характерно для субдукционных лав. Важной особенностью являются субпараллельные тренды распределения элементов в различных по составу лавах, что позволяет предполагать их происхождении в результате кристаллизационной дифференциации одной родоначальной магмы.

Ni отличается очень высоким (~10) коэффициентом распределения между оливином и расплавом и отсадка этого минерала на ранних этапах кристаллизационной дифференциации резко уменьшает концентрацию элемента в остаточной жидкости.

Для сравнения на диаграмму нанесены рассчитанные тренды фракционного плавления и фракционной дифференциации.

Уже при отсадки 10% оливина концентрации элемента падает вдвое. При фракционном плавление содержание элемента в расплаве практически не меняется, буферируясь реститовым оливином.

Это подтверждает поведение когерентных элементов, например Ni, содержание которого резко падает с увеличение кремнезема Наряду с кристаллизационной дифференциацией существенное влияние на эволюцию континентальных магм может оказывать коровая контаминация, поскольку вулкан Уксичан расположен на мощной континентальной коре (28-30 км, Балеста и др., 1977). В пользу такого предположения может свидетельствовать, например, широкое проявление обратной и ритмичной зональностей в минералах рассматриваемых пород. Но составы минералов, например, плагиоклазов с прямой, обратной и ритмичной зональностями не достигают значений характерных для кислых коровых компонентов, с аномально высоким содержанием альбитового минала.

Радиогенные изотопы

Кроме того, изотопные и геохимические данные также не подтверждают участие корового вещества в магмогенезисе. Например, незначительные вариации изотопных составов стронция и кислорода, а также субгоризонтальный тренд изученных пород на диаграмме SiO₂-¹⁴³Nd/¹⁴⁴Nd.

Компьютерное моделирование процессов кристаллизационной дифференциации

Учитывая ведущую роль фракционной кристаллизации, для оценки физикохимических параметров этого процесса было выполнено компьютерное моделирование с использованием программы Адиабат 1-7 (Smith, Asimow 2005).

Состав первичного расплава равновесного с мантийным оливином Fo₉₀ был рассчитан по программе Petrolog 2.1 (Danyushevsky, 2001)

Наибольшее соответствие расчетных и природных трендов отвечает условиям изобарической фракционной кристаллизации при: H₂O=1 мас. % fO₂=NNO Эти условия более «сухие» и востановленные, чем в

субдукционных лавах (H₂O=1.2-3 мас %, fO₂=+2.5-3 NNO, Tatsumi, 2009).

Подтверждением корректности выполненных расчетов является хорошее совпадение природных и расчетных ассоциации и составов минералов

MgO	Комплекс, порода	Природные	Расчетные 0 NNO-1H2O- 1kb
8.65	СВ-856-ВК- базальт	Ol+Cpx +Pl Ol (86-57) Cpx (81-71) мало Pl (65-61) осн.м., мало	Ol Ol (83)
6.30	ЩВ-1716-ВК- андезибазальт	Ol+Pl+Cpx+Mt Ol (82-63) Pl (73-58) Cpx (75-72) осн.м., мало Mt осн.м.	Ol Ol (80)
5.19	ЩВ -1837- ВК- андезибазальт	Ol+Cpx+Pl + Mt Ol (73-60) Cpx (77-70) Pl (89-42) Mt осн.м.	Ol+Pl+ Cpx Ol (74) Pl (82) Cpx (70)
3.6	ЩВ -1831- ВК- андезибазальт	Ol+Cpx + Pl +Mt Ol (75-47) Pl (82-23) Cpx (77-56)	Ol+Pl+ Cpx+ Mt Ol (73) Pl (74) Cpx (72)
1.16	ЩВ -777- Карцевый латит	Cpx+Opx+ Pl+ Mt Pl (45)	Pl+Cpx+Opx+Mt Pl (65)
		Opx (76-74)	Opx (73)

Особенности поведения, значительные вариации Al₂O₃ в изученных породах, а также расчетные данные, дают основания предполагать вариации давления от 0.5 до 5 кбар. При этом высокоглиноземистые породы кристаллизуются при более высоком давление (2-5 кбар). Это в какой то мере позволяет судить о происхождении высокоглиноземистых пород, проблема, которая остается не решенной до настоящего времени. Значительные вариации концентраций данного элемента на вариационных диаграммах – характерная особенность в целом островодужных систем, например Курил (Мартынов и др., 2010)

Данные по изобарической кристаллизационной дифференциации при варьирующих давлениях свидетельствуют о наличии разноглубинных магматических очагов под вулканом Уксичан. Это, в какой то мере, подтверждается данными сейсмической томографии, выполненных на современных крупных вулканических центрах Камчатки, например, на Ключевском вулкане (Koulakov et al., 2011).

Выводы:

- Выполненные минералогические, петрохимические, микроэлементые и изотопные исследования указывают на ведущую роль фракционной кристаллизации в образовании комплекса пород вулкана Уксичан. Присутствие в некоторых типах лав вкрапленников с обратной и ритмичной зональностями свидетельствует либо о периодическом поступлении новых порций расплавов в кристаллизующуюся магматическую камеру, либо о динамическом поведение расплавов в последней.
- 2) Результаты ЭВМ моделирования (Адиабат 1-7) дают основания предполагать изобарическую кристаллизационную дифференциацию (H₂O ~ 1 мас %, fO₂ ~ NNO) при давлениях 0.5-5 кбар (1.5-15 км). Это свидетельствует о существовании разноуровневых магматических камер и образовании высокоглиноземистых вулканитов при более высоких давлениях 2-5 кбар (6-15км).

Спасибо за внимание!

Незначительные вариации Hf/Zr и Ta/Nb отношений также противоречат существенной роли коровой контаминации. Происхождение изученных пород, по-видимому, связано с плавлением одного магматического источника.

Поведение глинозема

В интервале концентраций MgO 6-3 масс.% лавы стратовулкана (SV) и щитового вулкана (PP) формируют два различных петрохимических тренда – с возрастанием и падением содержания Al₂O₃

Такая закономерность прослеживается и для других островодужных систем, например, Курильской.

Возможные объяснения аномально высоких концентраций Al ₂ O ₃ :	Диагностические признаки
1) Аккумуляция плагиоклаза;	Геологичская позиция и наличие большого количества крупных и средних фенокристов плагиоклаза, возможно, с признаками реакционного взаимодействия с основной массой.
2) Особенности физико-химических условий кристаллизации и эволюции.	Соответствие петрохимических трендов и модельных расчетов (использованием компьютерных программ - подбор теоретической модели кристаллизации петрохимическим трендам).

Но петрографические признаки аккумуляции плагиоклаза отсутствуют

Высокоглиноземистый образец. Аккумуляции Pl нет.

Некоторые образцы высокоглиноземистых базальтов действительно храктеризуются наличием большого количество вкрапленников резорбированного плагиоклаза крупной-средней размерности при небольшом количестве фемических минералов. Однако другие образцы с высокими значениями Al₂O₃ визуально не отличимы от образцов с низким содержанием Al₂O₃. Отсутствие петрографических признаков аккумуляция Pl в высокоглиноземистых лавах отмечалось A.A. Чащиным при изучении лав в. Мутновский (Южная Камчатка).

Высокоглиноземистый образец. Возможная аккумуляция Pl.

Низкоглиноземистый образец для сравнения.

Компьютерное моделирование процессов кристаллизационной дифференциации

Поэтому наличие двух трендов по глинозему, по-видимому, связаны с физико-химичискими особенностями эволюции первичных мантийных расплавов.

Для оценки физико-химических условий (давление, температура, летучесть кислорода объемы кристаллизующихся фаз), при которых происходила эволюция магматического расплава, роли кристаллизационной дифференциации, в том числе и полибарической, использовалась программа КОМАГМАТ, разработанная в ГЕОХИ РАН [Ariskin et al., 1993].

КОМАГМАТ представляет собой пакет прикладных петрологических ЭВМ программ, реализованных для персональных компьютеров IBM PC и предназначенных для расчета последовательности выделения минералов и химической эволюции расплава при равновесной или фракционной кристаллизации базальтовой магмы, при различных давлениях, содержаниях воды и фугитивности кислорода. Основой программы является решение систем уравнений равновесия минерал-расплав (геотермометров) для главных фаз базальтовой системы при заданных условиях ее кристаллизации. На выходе, в зависимости от выбранной модели кристаллизации (фракционная или равновесная), получаем температуры, составы кристаллизующихся фаз и остаточного расплава.

Программа КОМАГМАТ была успешно использована для решения вопросов эволюции субдукционных магм на примере в. Ключевской (Арискин, Бармина, 2000) и в. Тятя (Мартынов и др., 2005).

Расчет первичного состава магмы, используя программу Petrolog 2.1 (Danyushevsky, 2001)

Для расчета состава первичной магмы мы использовали программу Petrolog и состав наиболее магнезиального базальта вулкана Уксичан.

Первичными магмами считаются магмы находящиеся в равновесии с мантийным оливином (Fo 85-92) и характеризующиеся содержаниями MgO от 8.5 до 10 масс.%

Мантийный оливин состава Fo – 85 (обогащенная мантия).

Οδ	разец Es-1 SiO ₂ TiO 52.85 0.95	778: ₂ Al ₂ O ₃ 5 17.81	Fe ₂ O ₃ 0.00	FeO 9.22	MnO 0.17	MgO 4.93	CaO 9.65	Na ₂ O 3.18	K ₂ O 0.88	P ₂ O ₅ 0.35	$Cr_2O_3 \\ 0.00$	H ₂ O 0.00
	В безводных условиях, при P=10 кбар, к составу Es-1778 необходимо добавить Olv 5.39 (масс.%); Cpx 16.66 (масс.%), для того, чтобы получить расплав равновесный с Fo=85											
Кон	ечный со	став (пе	ервичн	ая ма	гма):							
	SiO ₂ TiO ₂	Al_2O_3	Fe ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂	$O K_2$	$P_2 O P_2$	$O_5 Cr_2$	$O_3 H_2O$
	51.95 0.74	14.74	1.15	8.20	5 0.13	9.30	10.3	0 2.4	la 0.	69 0.	27 0.	00.0 00
Срх	52.73	4.88		5.01	l	20.22	2 17.1	7				
Olv	40.01			14.3	5	45.63						

Чтобы получить первичный состав равновесный с Ol 85 к природному образцу необходимо добавить 5.39 об.% оливина и 16.66 об.% клинопироксена. В красной рамке показан расчет, который использовался в дальнейшем для расчетов.

Моделирование курса фракционной кристаллизации проводилось при : Давление (Р) от 1 до 10 кбар;

содержание воды в системе (H₂O) от 0 до 3 мас.% с шагом 0.2 мас.%, в открытых (QFM) по кислороду условиях, $fO_2 = +1 - +2.5$ QFM; максимальная степень фракционирования 90%.

Моделирование фракционной изобарической кристаллизации по программе КОМАГМАТ: вариации – P, H₂O, fO₂.

Фракционная кристаллизациянаиболее соответствующие условия: (1) **fO**₂ - +2 **QFM** 0.6Н2О-7кбар 0.6Н2О-9кбар 1H₂O-3кбар 1H₂O-5кбар 1H₂O-7кбар 1H₂O-9кбар 1.6H₂O-3кбар 1.6H₂O-7кбар 1.6H₂O-9кбар 2H₂O-3кбар 2H₂O-5кбар 2H₂O-7кбар

(2) fO₂ - +2.5 QFM
0.6H₂O-5кбар
0.6H₂O-7кбар
1H₂O-5кбар
1H₂O-7кбар

Были выполнены расчеты при различных моделях криссталлизационной дифференциации, давлениях, содержаниях воды и активности кислорода. Наибольшее соответствие петрохимических и расчетных трендов наблюдается при изобарической фракционной кристаллизации. Тренды рассчитывались отдельно для давлений 1, 2, 3 и т.д до 9 кбар, при фугитивности кислорода значительно выше буфера QFM.

Al_2O_3

Важно, что выбранная модель фракционной кристаллизации хорошо описывает широкие вариации составов по содержанию Al₂O₃. Относительно низкие давления (9-1 кбар) и высокий окислительный потенциал свидетельствуют о фракционировании первичной магмы в коровых периферических очагах, что не противоречит геологическими и петрохимическими данными.

Вариации давления свидетельствуют о перемещении периферического очага к поверхности в процессе формирования стратовулкана. На начальных этапах он располагался на глубине ~27 км, с излиянием высокоглиноземистых магм. На поздних этапах фракционирование расплавов происходило на глубине ~3 км – с низкоглиноземистыми составами дифференциатами.

Третий этап вулканизма (поздние щитовые вулканы, ареальные конуса)

Моделирование эволюции третьего этапа магматизма (площадные излияния)

В качестве расчетного базиса для группы позднего вулканизма (AK, PP) была использована средняя величина, взятая по двум природным образцам с высоким содержанием MgO.

Комплекс	SiO ₂	TiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	P ₂ O ₅
Ареальные вулканические	10.86	0.95	16 52	0.18	0.17	0 50	10.50	2.54	0.45	0.16
конусы	49.80	0.95	10.32	9.10	0.17	9.39	10.39	2.34	0.45	0.10
Ареальные вулканические										
конусы	50.82	0.88	16.06	9.18	0.17	9.14	10.08	2.48	0.97	0.22
Средний состав – взят для расчетов	50.34	0.91	16.29	9.18	0.17	9.37	10.33	2.51	0.71	0.19

Моделирование фракционной изобарической кристаллизации по программе КОМАГМАТ: вариации – P, H₂O, fO₂.

На графике нанесены расчетные тренды при условиях: (1) – красный тренд \mathbf{P} от 1 до 9 кбар с шагом 2 кбар $\mathbf{fO}_2 = +1.5$ QFM $\mathbf{H}_2\mathbf{O} = 2.4, 2.6, 2.8, 3$ (2) – фиолетовый тренд \mathbf{P} от 1 до 9 кбар с шагом 2 кбар; $\mathbf{fO}_2 = +1.75$ QFM $\mathbf{H}_2\mathbf{O} = 1.8, 2.2, 2.4$

Модель фракционной изобарической кристаллизации, использованная ранее не подходит, т.к. не объясняет поведение глинозема.

Моделирование курса фракционной изобарической кристаллизации проводилось при :

Давление (P) от 1 до 10 кбар с шагом 2кбар; содержание воды в системе (H₂O) от 0 до 3 мас.% с шагом 0.2 мас.%, в открытых (QFM) по кислороду условиях, $fO_2 = +1 - +2.5$ QFM; максимальная степень фракционирования 90%.

Условные обозначения:

— расчетный тренд

природный тренд

Метод изобарической фракционной кристаллизации не описывает все составы по содержанию Al₂O₃.

Тренды рассчитаны при условиях – $fO_2 = 1.5, H_2O = 2.6, P$ от 1 до 9 кбар с шагом 2 кбар

На этом слайде это видно яснее.

Моделирование фракционной декомпрессионной кристаллизации: вариации – P, H₂O, fO₂.

Фракционная

2.2H₂O-0.3dP/dF

 $2.4H_2O-0.2dP/dF$

Наибольшее соответствие кристаллизациянаиболее петрохимических и расчетных соответствующие трендов наблюдается при условия: декомпрессионной фракционной (1) **OFM +1.5** кристаллизации. Такой тип 2.4H₂O-0.2dP/dF дифференциации подразумевает $2.6H_{2}O-0.2dP/dF$ фракционирование одной порции 2.6H₂O-0.3dP/dF 2.8H₂O-0.2dP/dF магм при подъеме к поверхности. $3H_2O-0.2dP/dF$ $3H_2O-0.3dP/dF$ (2) QFM +1.75 $1.8H_2O-0.2dP/dF$

Моделирование курса фракционной декомпрессионной кристаллизации проводилось при :

Давление (Р) от 1 до 10 кбар;

скорость декомпрессии магматического расплава (dP/dF) от 0.1 до 0.5 кбар/% крист; содержание воды в системе (H₂O) от 0 до 3 мас.% с шагом 0.2 мас.%, в открытых (QFM) по кислороду условиях, $fO_2 = +0.5 - +2$ QFM; максимальная степень фракционирования 90%.

На основе сопоставления расчетных и природными данных, мы предположили подъем исходного расплава с глубины ~27 км без длительной задержки в периферическом очаге, что хорошо согласуется с геологическими данными.

Выводы:

- 1. В результате анализа петрохимических данных и ЭВМ моделирований (программа КОМАГМАТ), были оценены физико-химические условия эволюции расплавов двух этапов магматизма вулканического центра Уксичан и построек его территории.
- 2. Вулканиты второго этапа формировались в результате изобарической кристаллизационной дифференциации (H₂O ~ 0.6-2 масс. %, fO₂ +2, +2.5 QFM) при давлениях от 9 до 1 кбар с шагом 1 кбар. Такие условия соответствуют относительно медленному, последовательному перемещению периферического магматического очага с глубины ~27 км, до глубины ~ 3 км.
- 3. Исходная магма третьего этапа вулканизма образовалась в результате полибарической фракционной кристаллизации (H₂O ~1.4-3 масс. %, несколько более восстановительных условиях +1.5, +2 QFM) со скоростью декомпрессии 0.2-0.3 кбар/% крист. Данный тип дифференциации предполагает подъем расплава с глубины ~27 км без длительной задержки в периферических очагах.

Условные обозначения:

- СВ стратовулкан
- AI глиноземистые породы
- ЩВ щитовой вулкан
- КВ кальдера-вулкан

Вулканические центры миоцен-плиоценового времени (вулканогенный фундамент) не реконструированы.

Вулканиты двух последних этапов формировали различные по локализации и морфологии вулканические центры.

Излияние лав второго этапа происходили из вулканических аппаратов центрального типа– стратовулкана, щитового вулкана и кальдера-вулкана.

Поздние этапы вулканизма характеризуются площадными излияниями с формированием небольших щитовых вулканов и ареальных конусов

Такая особенность косвенно свидетельствует о различных: (1) составах первичных магм и (2) особенностях их эволюции; (3) тектоническом режиме вулканизма.